

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

VLBI of GLAST targets at far south declinations

Assoc. Prof. Steven Tingay

Centre for Astrophysics and Supercomputing

"VLBI in the GLAST era", GSFC 23/24 April 2007

Southern Hemisphere VLBI capabilities

■ <u>Telescopes:</u>

- Australia (6 + 3 new in 2008/09);
- New Zealand (1 new in 2008);
- South Africa (1);

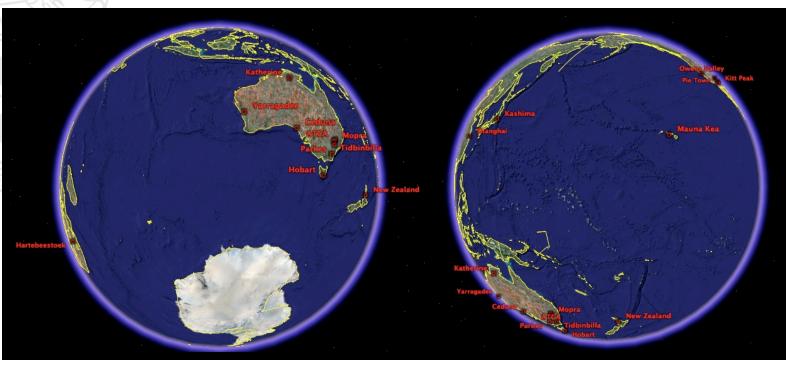
7 antenna Southern Hemisphere array (11 in 2008/09)

Possible to co-observe with China, Japan, USA: good for equatorial and near south targets;

Recording systems

- LBADR (based on PCEVN system, up to 1 Gbps);
- Mark5 (in 2008/09);

Correlator


- Software correlator on Swinburne supercomputer (~1000 core Beowulf cluster);
- Supports LBADR, Mark5, K5 etc formats i.e. mixed array compatibility

■ e-VLBI

- Real-time fibre optic links between 4 telescopes in Australia and Swinburne supercomputer;
- Rapid response observations for transient sources;

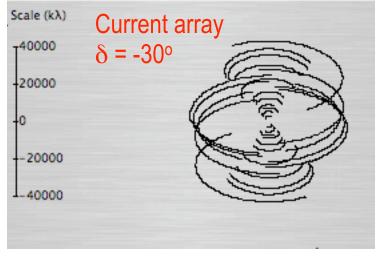
Antenna locations

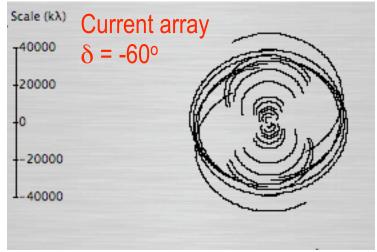
Frequency bands, antenna parameters

	English
<	

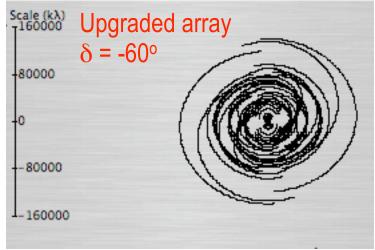
<u>Telescope</u>	<u>Organisation</u>	<u>Diameter</u>	8.4 GHz Tsys				
ATCA	ATNF	6 x 22 m	80 Jy				
Parkes	ATNF	64 m	40 Jy				
Mopra	ATNF	22 m	400 Jy				
Tidbinbilla*	NASA	70 m	25 Jy				
Hobart	U.Tas.	26 m	550 Jy				
Ceduna [^]	U.Tas.	30 m	600 Jy				
Hartebeesthoek	Hart.RAO	26 m	340 Jy				

[^] No 1.4 or 1.6 GHz receiver




Operates at: 1.4, 1.6, 2.3, 5.0, 8.4, 22 GHz

Polarisation calibration is not as easy as with the VLBA

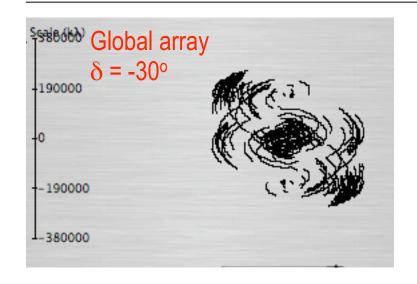

^{*} No 5.0 GHz receiver

(u,v) coverage and sensitivity

- 8.4 GHz;
- 12 hour (10% on phase calibrator);

(u,v) coverage and sensitivity (cont.)

- 12 hours observation (phase referenced);
- Max data rate (512 Mbps at 3 antennas; 1 Gbps at 3);
- 8.4 GHz;
- Uniform weighting;
 - \Rightarrow ~60 uJy/beam (1 σ image RMS);
 - ⇒ ~4 mas FWHM beam;
 - \Rightarrow ~140 uJy/beam (1 σ image RMS);
 - ⇒ ~1 mas FWHM beam;


Current Australian array

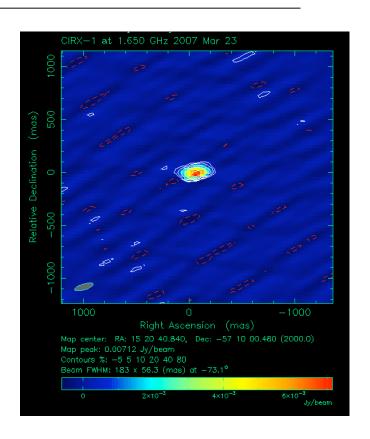
Upgraded Australian + New Zealand array (4 new antennas)

(u,v) coverage and sensitivity (cont.)

Same parameters as previous slide:

 \Rightarrow ~60 uJy/beam;

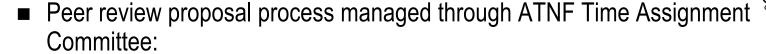
 \Rightarrow ~0.4 mas FWHM beam.


Australia
New Zealand
South Africa
Japan (Kashima)
USA (VLBA)

Southern Hemisphere VLBI array will be co-observing with the VSOP-2 space VLBI mission, following on from VSOP investigation of EGRET sources.

e-VLBI capabilities and wide-field imaging

- e-VLBI is realtime VLBI:
 - ☐ Data transport over long haul fibre to correlator;
 - □ Realtime correlation;
- Benefits:
 - ☐ Rapid response to transient radio sources:
 - ☐ Aim is within 1 hr of receiving trigger;
 - ☐ Instant feedback on detection;
- Applications:
 - ☐ X-ray binaries;
 - ☐ GRBs (require wide-field imaging capabilities or simultaneous low resolution observations can use ATCA in parallel with e-VLBI);


Relevance for GLAST

- Access to Southern Hemisphere targets δ < 40°;
- Improved (u,v) coverage for targets $40^{\circ} < \delta < +10^{\circ}$;
- e-VLBI + wide-field imaging capability for GRBs and other transients;
- Possibility of supporting observations with the ATCA for flux density monitoring of AGN and GRB followup;
- Pulsars, X-ray binaries, supernovae in nearby starburst galaxies etc;
- A good track record with EGRET, surveys, monitoring:
 - ☐ Large-scale ICRF VLBI monitoring (Ojha et al.);
 - □ VLBI and space VLBI studies of EGRET and differences between gamma-ray loud/gamma-ray quiet AGN (Tingay et al.)
 - □ ATCA flux density monitoring in support of VSOP, with application to EGRET (Tingay et al. 2002);
 - ☐ Flux density monitoring programs for IDV (Jauncey/Lovell et al.)

Practicalities

- □ PROPOSAL DEADLINES: June 15 and December 15 for 6 month observing semesters (http://www.atnf.csiro.au/observers);
- ☐ More details at http://www.atnf.csiro.au/vlbi;
- ☐ Coordination required for global VLBI observations;
- Observing sessions of 1 2 weeks duration, 3 or 4 times per year.
 - ☐ Involvement of the proposal team required during observations
 - □ Not as friendly as the VLBA or EVN some local knowledge is a benefit!!
- Anyone interested in joining a large Southern Hemisphere VLBI proposal to support GLAST? Also, flux density monitoring with the ATCA?

Let's	s ta	lk							
レフしく	o la	ın.			٠	٠			